
Muhammad Mazhar Iqbal
Soil and Water Testing Laboratory,Pakistan
Title: Foliar Applied Lead Chloride and Lead Nitrate Induced Growth and Physiological Changes in Rice
Biography
Biography: Muhammad Mazhar Iqbal
Abstract
Statement of the Problem: The plants can absorb Pb from leaf depositions that lead to elevated Pb concentration in plants even when there is a low level of Pb in soils and/or irrigation water. In urban and peri-urban agricultural areas, the valid assessment of low Pb accumulation by plant species/genotypes is necessary for the successful production of Pb safe food crops.
Methodology & Theoretical Orientation: A pot study was conducted to evaluate the effect of foliar application of Pb salts on growth, physiological processes and tissue concentration of Pb in rice. The present study was comprised of two factors: a) foliar application of Pb at 25 mg L-1 as lead chloride (PbCl2) and lead nitrate i.e., Pb(NO3)2, along with an uncontaminated control and b) fourteen rice genotypes, arranged in completely randomized block design each with three replications.
Findings: The results showed a devastating nature of Pb(NO3)2 treatment than PbCl2 on growth such as plant height, straw dry matter and yield, and physiological attributes like photosynthetic rate, transpiration rate, stomatal conductance of rice genotypes. Among rice genotypes, with foliar Pb application, Shaheen Basmati and KS-282 showed better growth, yield and physiological attributes, low Pb concentration in rice straw and paddy.
Conclusion & Significance: These both rice genotypes were identified as a valuable resource that can be used by farmers or in advance rice breeding programs targeted to increased Pb tolerance. Regarding the additional practical significance, the present study was under taken to capitalize the differences in toxicities of foliar applied Pb salts on rice genotypes, considering various anthropogenic sources of Pb pollution with associated risks of accompanying anions like Cl- and NO3- in the environment.